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1. Introduction.

In the method of stationary phase, one 1is concerned
with the asymptotic expansion, as X - », of functions
defined by integrals of the form

b
(1.1) I(2A) = faexp {12e(t))£(t)at.
We shall assume that the details of this method are
familiar to the reader and need not be discussed.

Our concern here shell be with the asymptotic
expansion of integrals of the form

b
(1.2) I(A) = j‘ H(Ae(t))f(t)dt
a

in the case where the kernel function H(t) is oscillatory

for both large positive and large negative arguments.

More precisely, we assume that, as t - 4=,

£<v/6 N(m -r
tv' } 2‘ mnt M10g t)".
l= m=0 n=0

(1.3) H(t) n.exp{i

Here each b, 1is real, N(m) 1is finite for all m and
{Re(rm)] is a monotonically increasing sequence with
1limit 4. In the limit t - -», we assume that an
expansion of the form (1.3) holds with t replaced by
lt] and with, in genersl, different constants.

Clearly the Fourier kernel exp{it} 1s & special

case of the general kernel we propose to study. Thus




we should expect to recover from our asymptotic analysis
of (1.2) the stationary phase results valid for (1.1).

We should point out that there are functions, such
as the Airy function Ai(t), which are oscillatory in
one of the l1imits t -+ e and exponential in the other,
It will be apparent that integrals (1.2) with suc. .unc-
tions as kernels can also be treated by the methods to
be developed below.

The method itself involves applications and
generalizations of an asymptotic technique recently
developed by Handelsman and Lew [1], [2], [3]. This
technique makes heavy use of the Mellin transform whose
relevant properties are discussed below. 1In references
[1],[2] and [ 2] only the case o(t) =t 1s treated.
Here, however, we shall consider more general ¢ and,
in particular, shall sllow ¢ to be non-monotonic.

As is well-known, to derive the asymptotic expansion
of {(1.1) one must first identify its set of criticel
points. These include end points of integration,
stationary points of e« and points where elther e« or
g feils to be infinitely differentiable. We shall show
that, in addition to all of the above, the set of
critical points for (1.2) also includes the zeros of ¢o.
Indeed, this 1s one of the main results of this paper.

To ¢ain some insight into the criticel nature of



the zeros of o, suppose that (1.3) 18 only an asymptotic
result and, in particular, is not valid near t = 0.

Then, no matter how large A 18, there always exists a
neighborhood of each zero of m throughout which H(Ae)
is not asymptotically described by our assumed asymptotic
forms. 1In other words, the asymptotic expansion of H()z),
as A -~ o, undergoes a drastic change as t passes
through any of these neighborhoods. For this reason we
can think of these neighborhoods as "boundary layer
regions." It is certainly reasonable that the rapid
change in the asymptotic behavior of H(Ay) as t

passes through a boundary layer region will affect the
asymptotic expansion of 1.

In the light of the above argument we can under-
stand why the zeros of ¢ are not critical points for
(1.1). Indeed, the Fourier kernel H(t) = exp(it),
has an asymptotic expansion as t - 4+ of the form
(1.3). This expansion, however, holds for all t so
that there are no boundary layer regions of the type
Just described.

In the followlng section we reduce our problem to
the study of certain integrals of canonical type. 1In
Section 3, we consider some results concerning Mellin
transforms that are needed to implement our methods.

Finally the desired asymptotic expansion of I {is




obtained in Sections 4 and 5.

2. Reduction tc Canonical Integrals.

Because there are many possible critical points
for integrals of the form (1.2) with H an oscillatory
kernel, it is convenlient to have a means for isolating
them so that their contributions to the asymptotic
expansion of I can be studied separately. This can
be accomplished by using neutralizer functions. These
were first introduced by Van der Corput {4 ], and we
shall assume that their basic properties are familiar
to the reader. The net effect of the neutralization
procesé is to reduce the asymptotic analysis of (1.3)
to the study of & sum of integrals each having exactly
one critical point either as an upper or as a lower
end point of integration.

Suppose first that t =t is a critical point

0
at which ¢ is non-zero. After neutralization, t =t

0
will appear as either an upper or lower end polnt of
integration in at most two of the lntegrals to be
asymptotically evaluated. To obtain the corresponding
contributions to the asymptotic expansion of I, one
need only replace H(AM) by the appropriate asymptotic

expansion and integrate the resulting series term by

term. Thus, finding these contributions is reduced to



the asymptotic evaluation of many integrals of the form
(1.1). We have, therefore, that the only critical points
which require non-standard methods of analysis are the
zeros of o.

As a result of the above discussion, we shall focus
our attention on obtaining the contribution to the
asymptotic expansion of (1l.2) corresponding to a given
zero of . If we denote thls zero by t = ¢ and the

contribution by Ic(x), then after neutralization we

find that
(2.1) I,(A) = Ic+(k) + I, (A
where
)y [ g

(2.2) Ic_(k = jaH(Am)gc-(t) t
and

2.3) (™) ° ) (t)dt

. = Aer .

(2.3 I, LH( g,

Here 8o (t) vanishes for t < a < c with a chosen

so that © vanishes in f(a,c] only at t =c¢ and e
does not vanish in ([a,c). Furthermore, &, (t) = g
in some small half neighborhood of t = c_. )

Similarly, gc+(t) vanishes for ¢ < 8 ¢t with
B chosen so that & vanishes in [c¢,8] only at t = ¢

and o' does not vanish in (c¢,B). Finally, g, =&
+



in some small half neighborhood of t = c,- 0f course

if ¢ coincides with one of the end points of inte-

gration in (1.2), then only one of the integrals 1,

1 is non-zero.
s
Suppose now that as t - c_, ¢ has an asymptotic

expansion whose leading term is given by

Yo
(2.4) o ~'YO(C-t) ’ > 0.

Vo

If in (2.2) we introduce the new variable of integration

(2.5) s = u, o(t), B, = SEn v,

then we can write

(2.6) I, () = fOH(AUC-s)G_(s)ds.
Here
(2.7) 6_ =g, (t(s)fE

which we note vanishes for s > u, n(B).

Similarly, if we assume that as t -~ ¢

4
Po
(2.8) ~(t) ~ no(t-c) , 0y > 0,
and set
(2.9) S =, o U, = 8gn n
c, ’ c, 0’

then Ic can be written



(2.10) 1c+(x) = f;H(Auc+s)G+(s)ds.
Here
(2.11) G, (s) = gc+<t<s>)%§

which vanishes for s > u, eola).
+
Thus we have reduced our problem to the study of

the two canonical integrals
(2.12) 1,(A) = [ H(xrs)a(s)as
‘0

where the kernel H(t) 1s oscillatory in each of the
limits ¢t - 4o and G(s) vanishes for s outside of

some finite interval.

3. Results on Mellin Transfeorms.

As we shall see, Mellin transforms play an important
role in our asymptotic development. Indeed, one might
anticipate this upon observing that each of the canonical
integrals (2.12) can be expressed as & Mellin convolution
(31.

The Mellin transform of a function f(s8) is defined

by
(3.1) M[f;z] = I f(s)sz'lds, z = x+1y
]

when this integral exists. Furthermore if f 1s such that



(3.2) £f(s) = o(sP), s - O+

£(s) = 0(s™T), & = 4.
Then M[f;z] converges and is holomorphic in the strip
(3.2) -p < Re(z) = x < r.

Also, within this strip |lz‘lm IM[ f;x+iy]] = O.
N Racad

If in (3.2) -p > r, then M[f;z] does not exist
in the ordinary sense. Nevertheless with certain addi-
tional assumptions on f one can define M[f;z] 1in a
generallzed sense {3 ]. We shall not need to appeal to
this extension in this paper however,

From our point of view, there are two results con-
cerning Mellin transforms that cre of special significance.

The first is the simple relation
-z z-1 -z
(2.5) M f(As);z] = A r f{s)s” “ds = A “M[f;z].
"0

The seccni involves integrals of the form

~0
(3.5) J = [ £(s)n(s)ds.

"0
Inieed, suppose that M[f;z] and M[h;z] are holo-
morphic in overiapping vertical strips. (This will
always be the case if J 1is absolutely convergent.)

If Re(z) = ¢ 1lles in the common strip of analyticity,

th-n we ha e




B e ————

(3.6) j’f(s)h(s)ds = Q%IIC+1QM[h;z]M[f;1-z]dz
6] C=io
which is Parsevalt's Theorem for Mellin transforms.
Upon combining these last two results, we find

that our canonical integrals (2.12) have the

representations
C +iew
(3.7)  T*(A) = [ ¥ ATM[H(2s);2]M[G(s);1-2]az.
Ci-ia
Here Re(z) = ¢, 1lies in the strip of analyticity of
the integrand. We note that the total dependence of

the integrand on A is contained in the factor A 2.

Our plan is to push the contour of integration in
(3.7) to the right, apply Cauchy's integral theorem,
and derive thereby an asymptotic expansion of 15(2)
as a residue series. In order to accomplish this we
must obtain certain information about the analytic
continuations of the functions M[{H(:s);2z] and
M[{G(s);1-z] into the right half plane. Specifically,
we must locate and classify the singularities of these
continuations, and we must estimate thelr behavior as
z - » along vertical lines.

For oscillatory functions, the required information

is contained in

Lemma 1. Suppose that H(s) 4is locally integrable on

(0,2) and satisfies (3.2) with -p < r. Suppose further
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that, as 8 = +=, H(s) has an asymptotic expansion of
the form (1.3) in which event -r = ro. Then M[H;z)
can be continued into the right half plane Re(z) > -p
a8 & holomorphic function. Furthermore, in this right

half plane

(x-Re(ry))/v-3%
(3.8) szl = oflyl 0T E)

as |y| - =.
Proof: The proof of this lemma is given in the Appendix.

As an example and to illustrate the sharpness of
the estimate (3.8), let us consider the function
V)

H = explis whose Mellin transform 1s given by [ 5]

(3.9) Miexp(isV);z] = exp(%§%>r(%), 0<x<1.

In this case ry = 0, and the analytic continuatilon
into Re(z) > 1 4s explicit. We note that r(%) 1s
analytic in Re(z) > 0. The estimate (3.8) follows
from the known asymptotlic expansion of the gamma

function
1

X-7
(3.10) r(z) ~ |yl “exp[-wiyl/2], [yl - o

As we have indicated above, our plan is to push
the contour of integration in (3.7) to the right. 1In

order to accomplish this we must of course determine
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the analytic continuation of M[G;1l-2) 4into a right
half plane. Let us assume for the present that this
has been done and M[G;l-z] 1s a meromorphic function.
Then to Justify the displacement of the contour to the
line Re(z) = k > c,, one must still show that
(2.11) 1im  M[H(%s);z]M[G(s);1l-2] = O, c, <x <k
[y |-
The estimate (3.8) implies an algebraic growth of
M[H(+s);z] 4n this limit which worsens with increasing
X. This growth must therefore be compensated by a
commensurate decay of the analytic continuation of
M(G(s);1-z]. In the following sequence of lemmas, we

shall establish sufficient conditions for such decay.

Lemma 2. Let G(s) be q times continuously differentiable
on (0,»). Let G(Q+l)(s) be piecewise contimuous on

(0,k] and continuous for s > k. Finally suppose that

there exists a real number X5 such that for all x > Xgs
(;é%>p(sx6(s)) vanishes, as s - 0+, for p = 0,1,2,...,q

and, as 8 - «, for p = 0,1,2,...,q+1. Then, as |y| = =,
(3.12) M(G;2z) = o(|yl™%"h)

for all x > Xqe

Proof: The proof of this lemma is given in the Appendix.

Remarks: The hypotheses of Lemma 2 simply provide




1z

sufficient information to allow for the estimation of
M[{G;z] via integration by parts. PFurthermore the
assumptions on G d1mply that M[G;z] is holomorphic
in -Xq < Relz).

The next two lemmas follow from analogous results
for Fourier transforms. Their proofs will be omitted
here, but can be constructed from the corresponding

proofs in Titchmarsh [ 6 ].

Lemma 3. Let G(s) satisfy the conditions of Lemma 2
except now replace the condition on G(Q+l)(s) by the
assumption that ( )(sxG(s)) is of bounded total

variation. Then
(3.132) MG;z] = o(ly| 271,

as |y| - o, for all x > Xqe

Lemma 4. Let G(s) satisfy the conditions of Lemma 2
except now replace the condition on G(q+l)(s) by the
assumption that s——)(sxG(s)) is Hélder continuous of
order ¥ on [0,k] and of bounded total variation for

s > k. Then
(2.14) M{G;z] = o(|y|™%7Y)

as |yl = «, for all x > X
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Lemmas 2-4 yleld estimates on the decay of M{G;z]
in its region of absolute convergence or equivalently
in its region of analyticity. We now wish to obtain
analogous information outslde of this region. A:s we
shall soon see, the analytic continuation of M[G;z]
to the left, (and hence of M[G;1l-z]) to the right),
depends to a large extent on the nature of G(s) near
8 = 0+. Indeed we have the following result due to
Handelsman and Lew { 3 }:

Lemma 5. Suppose that M[G;z] is holomorphic in the
region -a < Re(z) < B, and that, as 8 - O+,

® N%‘\)) a n
(3.15) G(s) ~ ) Y dps "(logs)
m=0 n=Q

with Re(am) t « and N(m) finite for each m. Then,
a-= Re(ao) in (3.2) and M[G;z] can be continued into
Re(z) £ - Re(ao) as a meromorphic function with poles

at the points z = -8 Moreover, about these points,
M[G ;2] has a Laurent expansion with singular part
N(m)
- E: d T'(n+1)
mn n+
n=0 (-z-am)

Remark. We note that when N(m) = 0 for each m, i.e.,
when no logaritnms appear in the expansion (3.15), all
of the poles in the analytic continuation of M[G;z] to

the left are simple.
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If we combine the results of Lemmas 1 and 5, then
we can conclude that when G(s) has an expansion, as
§ - O+, of the form (3.15), all of the singularities
of the analytic continuation of M[H(xs);2], M{G;1l-2]
into the right half plane are determined by the
exponents a8, Moreover, these singularities are poles
so that our proposed deformation of contour will indeed
yield a residue series for 1%(A). We must still esti-
mate M[G;l-2z] as |y] = ~ in order to justify the

deformation. For this purpose we now state

Lemma Q. Let G(s) satisfy the smoothness conditions of
Lemma 2. Also, let sé%)p(sxs) vanish, as s = +w,

for p=0,1,...,+1 and x > l-Re(ao) = X Finally

OQ
suppose that (3.15) holds and that the asymptotic

expansion of dm)(s), m=0,...,9+1, as s - O+,
is obtained by successively differentiating (3.15)

term by term. Then
(3.16) M[G3z) = o(ly|™™D), [yl = =,

for all x. Here by M[G;z] we mean the analytic con-

tinuation of this Mellin transform into the entire z-plane.

Proof: The proof of this lemma is given in the Appendix.

Corollary. If, in Lemma 6, the stated conditions hold
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for all gq, then M[G;z] = O(Iyl-r) for all r and
all x.

We remark that, if in Lemma 6, the smoothness
conditions of Lemma 2 are replaced by those of either
Lemma 3 or Lemma 4, then the corresponding changes
must be made in the estimate (3.16). Nevertheless, one
still finds that the results obtained are valid for the
analytic continuation of the Mellin transform into the
entire complex plane.

To 1llustrate some of the results obtained above
let us consider an explicit example. Indeed, suppose

that

(3.17) G(s) = s%e”5

which satisfies the conditions of Lemma 6 with a, = a
and q = ~. Then the corollary predicts that, as |y| = =,
M[G;2z] decays faster than any power of |y|. For this

example we have the explicit result

M[G;z] = T(a+z) = O(;xp(E!%XL>>, |yl = =

which agrees with this prediction. Furthermore we have
from known properties of the gamma function that the

analytic continuation of T(a+z) into Re(z) < -a has
simple poles at the points 2z = -(a+m), m = 0,1,2,...,

with corresponding singular parts
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(3.18) (-1)™/m! (z+a+m).

As is readily seen, thils last result is in agreement

with that predicted by Lemma 5.

4. Asymptotic Expansion of I(A).

By using the theory of Mellin transforms developed
in the previous section, we shall now derive asymptotic
expansions for the two canonical integrals (2.11). We
first note that, if H(+s) has the asymptotic expansion
(1.3) as s - =, and G(s) has the asymptotic expansion
(3.15) as s - O+, then in (3.7)

(4.1) c, < Min(Re(ro),Re(1+ao))

since this is the right limit of the common strip of
analyticity of the integrand in that equation.
We state the main result concerning the asymptotic

behavior of I (A) in

Theorem 1. Let G(s) satlsfy the conditions of Lemma 6

and H(#s) satisfy the conditions of Lemma 1. Then

N(m)

+ Y <

(4.2) I"(A) = L L 9mn
Re(am+1)<k n=0

-(am+l).

. .
T (M)-108 D n(ssyireay) + Erse.
§=0

Here
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(4.3) d?(h;k) = g%;fitizk'zM[H(tS);Z]M[G(S);I-ZI
= o(x‘k), A=

and

(4.4) k < v(q+%) + Re(r)

where k £ Re(a )+l for any m.

Proof: 1In the exact representation (3.7) we displace
the vertical contour of integration to the line
Re(z) = k > c,. We note that by Lemmas 1 and 5 the
analytic continuation of the integrand in (3.7) into
the right half plane is a meromorphic function with
poles at the points =z = am+1, m=0,1,.... Indeed,
we find, upon formally applying Cauchy's integral
theorem, that (4.2) is valid. Thus to complete the
proof of the theorem we need only Justify the displace-
ment itself and establish the error estimate given by
(4.3) and (4.4).

It follows from (3.8) and (3.16) that

(4.5) M[H(2s);x+iyIM[G(s);1l-x-1y] = 0(lyl'e(x)), {y] = =.
Here

(4.6) e(x) =q + 5 - (x-Re(rg))/v.
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Thus we can displace the contour to the line Re(z) = k

so long a8 e(k) >0, 1i.e., so long as
(4.7) k < v(q+%) + Re(ro).

With (4.7) satisfied we have that é:(x;k) exists.
The estimate (4.3) need not hold, however. We note that
é:(x;k) can be viewed as a Fourler transform with

reapect to log A. Indeed, we have

(+.8) A E(xsx)
= E%IJjwexp{-iy log AIM[H(%s)3;k+iyIM[G(s);1-k~1iy])dy.

Suppose now that (4.4) is sstisfied which, in turn,
implies that e(k) > 1. Then by applying the Riemann
Lebesgue lemma, we find that, as A - «, +{1he right side
of (4.8) 1s o(1), and the estimate (4.3) follows.

Corollary. Let H(+s) satisfy the hypotheses of Lemma 1
and let G(s) satisfy the hypotheses of Lemma 6 with

q= ». Tnen the infinite expansion

o N(m) - 1 n
(N.Q)I*(A) ~ Zjdmnx (am+ ) Z (?)(-105 A)JM(n'J)[H(is);l+am]
m=0 n=0 J=0

holds as A = =,

Proof: It follows from the corollary to Lemma 6, that

in this case
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(4.20) M[H(#s);x+1yIM[G(s);1-x-1y) = o(|y|™"), |yl = =,

for all r and all x. Hence we can let k go to +=
in (4.2) and (4.3) to obtain the desired result.

We note that when, in (3.15), d,=0 for n>1
and all m, 1.e., when no logarithms appear in the
asymptotic expansion of G(s), as s - O+, the asymptotic

expansion (4.9) reduces to

® - 1
(%.11) I(A) ~ E:dmox (am+ )M[H(is);1+am].
m=0

In the proof of Theorem 1, the Riemann Lebesgue
lemma was applied to estimate Ak(f(x;k) as A = o,
Recently, Bleistein, Handelsman and Lew { 7 ], have
obtained a generalization of this lemma which, under
slightly more restrictive assumptions can be used to
improve the error estimate found in Theorem 1. Indeed,

we have

Theorem 2. Let the hypotheses of Theorem 1 be satisfied
so that (4.5) holds with e(x) defined by (4.6). Suppose
further that

(b,12) M[H(28);x+iy]M[G(s);1-x-1y] ~ coexp(iuy“}lyl’E(x),

as |y| - o, Where a and ¢y are any real numbers.

Then (4.2) and (4.3) hold with
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(4.13) k < v(g+1) + Re(ro), k # Re(a.m+1), m=0,1,2,....

Proof: It follows from Theorem 1 that all we need show
is that (4.3) holds for all k satisfying (4.13). Thus
consider xk(g(x;k) as given by (4#.8). The results of
reference [7 ] show that whenever e(k) > O,
(4.14) 11m3¥ £(x3k) = o,

A=sctr
except possibly when 1 < u < 2 in (4.12). It is
further shown that (4.14) sti1ll holds with 1 < u < 2,

so long as
(4.15) 0 < e(k)=(1-§) = q+l-(k-Re(ry))/v + %-(1-%),

Since 1 7 u, it is clear (4.15) is satisfied whenever

(4.1%) holds. This completes the proof.

We wish to emphasize that the hypotheses of Theorem 2
differ from those of Theorem 1 only in that the former
includes an additional assumption concerning the oscil-
latory behavior of M[H(#s);z]M[G(s);1-z] 4in the limit
ly! = «, 1t is this more specific information that allows
us to apply the results of reference [7 ] and thereby
extend the validity of (4.3) to the region (4.4).

Our concern, of course, is ultimately with the

integrals I, (A) from which the canonical integrals

1*(2) were directly derived. We recall that s = 0 in
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1*(2) corresponds to t =c¢ 1in I, (A) where c is

a point in the original domain of 1n§egration at which
the phase function ¢ vanishes. If we assume that the
conditlions of the corollery to Theorem 1 hold, then we
find that s = 0 1is the only critical point for I*(A\).
Thus the infinite expansion (4.9) can be used to obtain
the contribution to the asymptotic expansion of (1.2)
corresponding to a zero of «. We must point out, how-
ever, that we have not, as yet, established the critical
nature of t = c¢. This can be done by explicitly
obtaining the expansions of Ic*(x) and adding them.
Only if the resulting sum is non-trivial can we conclude
that t = ¢ 1is a critical point for I(A). We shall
investigate this point further in the following section

along with some illustrative examples.

5. Explicit Results and Examples.

We wish now to determine the contribution to the
asymptotic expansion of (1.2) corresponding to an
interior zero of . Moreover, we want to express this
result explicitly in terms of the original functions
and g. In principle, we could, by using the results
of the previous section, find as many terms of this
contribution as desired. The computations, however,

become exceedingly awkward as the number of terms increases
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and hence, for the most part, we shall be content here
with obtaining expansions to leading order only. We
shall assume throughout this section that the functions
o and g are sufficiently smooth so that elther
Theorem 1 or 2 can be applied to obtain the expansions
to the orders stated.

Let us suppose that in (1.2) o(c) = O with
a<<c<b. If, as in Section 2, we denote the contri-
bution corresponding to t = ¢ by Ic(x), then we have
(5.1) I, = Ic+(‘A) + Ic_()\)
with I, (2} defined by (2.10) and (2.6) respectively.

4

We now assume that, as t - c+,

n -1 o
(5.2) g(t) ~g (t-c) ¥, o(t) ~mny(t-c) °

DO-
o' (t) ~ poﬂo(t~c) , 0g > O.
In this event, the change of variable (2.9) 1s easily

inverted to leading order. 1Indeed, we have

1/n
s 0
(5.3) (t-c) ~ (Tﬁgr>
as s - O+. Thus, it follows from (2.11) and (5.2) that
in (2.10)
g -» /e, (0, /o, =1)
(5.4) G, (s) ~El- I * 0 + 0

as s - 0+. Hence we find from (4.11) that, in this case
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g+ 1 w+/po "-1)+ =D /po\
(5:5) 1o, (0 = 5k ¥ " Oun, 05520 4 (3 470),

a3 A -+ =, Here M, = sgn "o

Similarly, if a8 t - c_
:D_-l Yo
g(t) ~g_(c-t) = , m -~y le-t) ¥,

vo—l
o! ~ -vovo(c-t) , Yo > 0.

(5.6)

Then we find

(5.7) Ic_(x) = g;(iT%gryb-/voMrH(u_s);ég] + o(x-w'/vo>.

Here u_ = 8gn v,.

Upon adding (5.5) and (5.7) we obtain the desired
contribution from t = ¢ +to leading order. In most
instances the constants in the assumed expansions (5.2)
are closely related to the corresponding constants in
(5.6). Two cases are worthy of special consideration.
Suppose first that g 1is continuous and non-zero at

t = ¢ 8o that

(5.8) g, =8_=glc), o =v =1

Suppose further that ¢ 1s differentiable at t = ¢
with e'(c) # 0. Then

(5.9) o= Yo = @ (e), o5 = vy =1

It follows from (5.5-5.S) that
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(5.10) I (%) ~m§§§}ﬁmm(s);1] + M[H(-8)31]).

Let us now suppose that relations (5.8) hold, but

that ¢ has a simple stationary point at t = c¢. Then
- - n _ -
(5'11) ﬂo = 'Yo = Q (C)/z, po = VO =1

so that, in this case, we have

1/2

(5.12) Ic(x) ~ g(c)(%ﬂ?ga37T> M[H(sgn @n(c)s);%].

This last formula is a generalization of the standard
stationary phase formula corresponding to H(s) = exp(zis).
(See Example 1 below.)

To illustrate what happens when logarithms appear
in the expansion of G(s), as s - O+, let us suppose
that ¢ = a in (1.2), ¢ 1is as in (5.2), and
)w )w-l

’ t-‘C.

'llog(t-c) + goo(t-c .

(5.12) 2(t) ~ gOI(t-c

After some calculation we find that, in (3.15), N(0) =1

and
g -»/c
_o» _ 01 0
I A :E““o ’
(5.14) ~w/0,, 0
.. BN r o &xloging?
00 © o5 %00 "'7Q;“"‘*'

Thus, it follows from (4.2) and (5.14) that, in this case,
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-w/no
(Al mgl) €01 ,
Ic(x) = Ic+(>\) ~-—-56-—— {-‘-’%-logl M[H(u+s);3%}

(5.15)

. g
+ (";—00'1"‘108’ "0' -300>M[H(U+s);";-n(;] - -;)96%’ adE“[H(u"l's);z]

z-;‘bu.}.

Po

As a final general result, let us obtain an infinite

asymptotic expansion of Ic(k) in the case where
(5.16) o(t) = t-c

and g(t) 1is infinitely differentiable at t = ¢. Then

& g(m)
g(t) ~ T Eolelite)®, ¢,

(5.17) m=0 )
s m
g(t) ~ JLLLET (R ee)®,  poc
m=0

Now upon applying (4.11) we obtain

L) %-(m+l
m

(5.18) IC(X) ~ 35(m)19)[M[H(s);m+1] + (-l)mMTH(~s);m+lj}.

m=0
If any terms in this sum (5.18) are non-zero, then
we must conclude that t = ¢ 1s a critical point for
I(A). Alternatively, if the right hand side of (5.18)
is identically zero, then t = ¢ 1is not critical. The
issue depends solely on the kernel and at that only

through the guantities

(5.19) MCH(8);m+1] + (~1)™MTH(-8);m+1], m = 0,1,2,....
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Thus, in general, t =c¢ 1is critical whenever H 1is
such that at least one of the quantities (5.19) is
non-zero. Furthermore, it 1s readily seen that the

same conclusion holds when o 18 any c¢® function that
vanishes at t = c.

We shall now consider two illustrative examples.

Example 1: Suppose H(s) 1s the complex Fourier kernel
exp(is). We have by direct computation

(5.20) Mlexp(is);z] = r(z)exp(ﬂ%i>
and
(5.21) M{exp(is);z] = e-"izM[exp(-is);z].

From this last relation we find
(5.22) M{exp(is);m+l] + (-1)"M[exp(-is);m+l] = 0, m = 0,1,2,...

and hence, ss anticipated in the introduction, the
interior zeros of «© are not critical points for Fourier
type integrals.

Suppose now that g 1is continuous at t =c¢ and o
has a simple stationary point there. Then it follows
from (5.12) and (5.20) that

N

(5.23) Ic(%) ~ g(c) jT;w¥37Teprsgn m"(c)%% .

This will be recognized as the standard stationary phase
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formula in the case where o(c) = 0. This last restric-
tion 1s of course unnecessary and can be avoided quite
simply. 1Indeed, suppose that at t = ¢, o has a
simple stationary point, but o(c) # 0. Then we write

b

(5.24)  I(A) = exp(1do(c)) | exp[1A(w(t)-r(c)]a(t)dt.
a

Since

(5.25) » = oft)-olc)

has a sinrple stationary point at t = c¢ and #(c) = O,
we find trat we need only multiply (5.23) by exp{iim(c))
to obtain the valid result in this case. Furthermore,
the contribution from any critical point at which o # 0
can be recovered in an analogous.manner from the corre-
sponding contribution in the case where ¢ vanishes at
the critical point.

Finally suppose that ¢ = a and (5.13) holds. Sup-
pose further that eo(t)~-e{(c) satisfies the relations
satisfied by e«(t) 1in (5.2). Then from (5.15), (5.20)
and the remarks of the preceeding paragraph, we find
that now

u, miwy (M) no| )

I (M) ~ exp{ixm(c)+- 7o r > (_6)

g g
{ 0110@)\ + Ollogl ~ &0 - —( rp—-‘ +
O O O “¥0

(5.26)
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Here ¢(z) 1s the logarithmic derivative of the gamma
function TI(z). We might point out that the last case
was considered in detail by Erdelyl [ 8] and vy !'+Kenna [ 9 ].

Example 2: Let us now suppose that in (1.2)
(5.27) H(s) = Jn(s), n=0,1,2,....

Here Jn is the Bessel function of the first kind of
order n. We have [5 ]
1 1
z-1 T(zz+z0)
L L
T'('E'n - §2+1)

Since Jn(s) is even about zero when n 1is even and

(5.28) M{J (s);z] = 2

odd about zero when n 1s odd, we have

(5.29) M[Jn(s);z] = -M[Jn(;s);z], n odd
M[Jn(s);z] = M[Jn(-s);z], n even.

From this it follows that
zmr(%{m+n+l])
F(%in+1-m])

(5.30) M[J (s)3mel] + (-1)™M[J (-s);m+1] = [1+(-1)™"1,

ms= 0.1’2,000

and hence for any integer n one half of the quantities
(5.30) are not 2zero. Thus t =c 1is a critical point

in this case.
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APPENDIX

In this Appendix, we shall prove Lemmas 1, 2 and 6

of the text.

Proof of Lemma 1: We introduce the functions

M N(m) -r
(A1) °k(s) = exp{-s°k+is“m(s)} 2; Eicmns M(10g s)P
m=0 n=0
(A2) Hk(s) = H(s) - nk(s).
Here
£<v/5
(A3) n(s) = E bzs'”

£=0
and for any positive k, we choose M = M(k) to be

the largest integer such that
(A4) Re(rM-ro) < k.

We observe that H(s) and have identical

Ok
asymptotic expansions, as s — +», to order

~Ty N(M) -k+Re(rO)
s (log s ) . As a result, Hk(s) = O(s

from
which it follows that M[Hk(s);21 is analytic in a
strip with right 1limit Re(z) < k+Re(rO). The real exponential

factor in assures us that quk(s);21 is analytic

g
k
in the left half plane Re(z) < Re(ro). Thus the left
limit of the strip of analyticity of Mer;z] is the
same as that of M'H;z]. Let us denote this limit by

Re{z) = a.
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Below, we list the relevant Mellin transforms along
with their strips of analyticity. We recall that in its
strip of analyticity a Mellin transform decays to zero

as |y| - =.

Mellin Transform Strip of Analyticity
M{H;z) -a < Re(z) < Re(ro)
M(ok;z] -o < Re(z) < Re(ro)
MFHk;z] -a < Re(z) < Re(ro) + k

From the above list we see that in order to analytically
continue M[H;zl 4into the region Re(z) < k+Re(ro) we need only
determine the analytic continuetion of M[ck;Z] into the
strip Re(ro) < Re(z) < Re(ro) T k. Furthermore, since
M[Hk;z] decays to zero as |y| - o in -a < Re(z) < Re(ro) + k,
any algebraic growth, in this 1limit, [ M[H;z] must
arise from M[ck;z].

Since "k(s) is a finite sum, so is its Mellin

transform. A typical term in M[ck;z] is given by
(A5) I[z;3r]) = I exp{-s'k+is w(s)}(log s)nsz'r'lds, Re(z)<Re(r).
0

In (A5) we rotate the path of integration onto the ray
arg s = 8 where 0 < ngn(bo) < n/2v. The effect of
this rotation 1s to introduce sufficient decay at «
so that the integral in (A5) converges for all z.

Hence 1I[z;r] can be continued into the entire z-plane
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as a holomorphic function. It remains only to estimate
the continuation as |y| = =.
In (A5) we stretch the integration variable s by

the factor to obtain

(A6)  I[z;r] = Iyl(x’r)/"f;exp{-(\yll/"s)'k}sx"'l

'exP{1|Y|(SVw(S|Yi1/v) + sgn y log s}ds.

The function w(slyll/v) 1s a finite sum of the form

(A7) o(s]y1YY) = by + by (s]y] V)0 4

From this we find that the phase function

(AE) w(s,y) = svw(s|y|l[v) + sgn v log s
has stationary points (points at which by = 0) 5y such
that

1/
(A9) Sq * (1%%%1) T o(iyl o).
th

Here q 1labels the different choices of the v root.
We note that when -sgn y/vb0 < 0, no stationary
points are near the positive real axis. When

-szgn y/b 0, however, there are simple stationary

n

.

points on or near the positive real axis. Armed with

this information, we can apply the results of reference {71,

to conclude that
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(A10) o(lyl™®), for a1l R, 2f2Y <o
. 0
1lim I[z,r] = (x-r)/v-%-

{yl oy ); =8> o

0
This completes the proof.
We remark that the relevant results of reference 77 )
essentially justify the formal application of the ordinary
method of stationary phase to the integral in (A8).

Proof of Lemma 2: By hypothesis

(A11) M{G;z] = fmsiy'l(sxG(s))ds
0

is absolutely convergent for all Re(z) = x> xo.* Upon

integrating by parts q times and using the stated
p
properties of (sé%D (s*G), we -obtain

(A12) M[G;z) = (;%;)qIZsiy'l(;é%Dq(sxG(s))ds.

We now break the interval of integration at the points
of discontinulty of G(Q+1)(s) and integrate by parts
once more in the resulting finite sum of integrals. 1In

this manner we obtain

o q
(A13) "oV (s%ate))as = 01317
0

‘ﬁote that the assumptions made imply that G(s) = o(s™T),

-x
as s - o, for all r and G(s) = O(s O) as s = O+,
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which, when combined with (Al2), completes the proof.

Proof of Lemma 6: If Re(z) = x > -Re(a,), then the

result follows from Lemma 2 when we note that the con-
ditions (-d%- p(s"c) =0, p=0,1,...,9, 85 8 — O+
are implied by the assumed differentiability properties
of the expansion (3.15). Now suppose that o 1is any
real number greater than Re(ao). Also let u(p) and

v(p) be positive integers satisfying the conditions
(A14) Re(au_l) <p K Re(au), Re(ay) +v > Re(au).

We now consider the functions

-1 N(m) a . "
(A15) ~o(8) = (/E L dpps "(log )7 )™
m=0 n=0
(A16) Gp(s) = G(s) - «p(s)

and note that wv(o) has been chosen so that the asymptotic
expansions of G and Ty agree to order Re(au_l). Thus,

as s - O+
R )
(A17) G = O(s *(%, >

We also note that Go(s) has all of the properties
attributed to G(s) 1in the statement of the lemma.
Hence, upon applying Lemma 2, we immediately find that,

for x > -Re(au) and |y] = =,
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(128) MIG,(s)527 = o(ly|™4™h)

By direct calculation we have that

p=1 N(m)
(A19) M[g ;21 = 2 d fnsa e 1(1og g)%® g5
p’>"- L “mn
m=0 n=0
“'l N(m) m a +2~ l v
-5

= Ldmn ds
m=0 n= )
u=-1 N(m

Y'dmn gn a, +2
= -~ L.n F[ 1
o e v dz v

m=0 n=0

in the region Re(z) > -Re(ao) and by analytic continu-
ation in the entire z-plane. We know, moreover, that 4
each term in (Al9) decays exponentially as |y| - « for
all x. Finally, since

(A20) M{G;2] = M[np;ZJ + MG 52,

we have that (3.16) holds for Re(z) > -Re(au( )). How-

ever, p 1is arbitrary and 1im Rela (0)1 = o, 80 that

=t

upon letting p ~ » we obtain the desired result.




